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Diffusion-limited coalescence with finite reaction rates in one 
dimension 

Dexin Zhongt and Daniel ben-Amaham$ 
Clarkson InStiNte for Statistical Physics (CISP). Physics Departmenf Clarkson University, 
Potsdam, NY 13699-5820, USA 

Received 14 July 1994 

Abstract. We SNdy the diffusion-limited process A + A + A in one dimension, with finite 
reaction rates. W e  develop an approximation scheme based on lhe mthod of inter-particle 
distribution functions (PDF), which was used formerly for Ihe exact solution of the same process 
with an infinite reaction me. The approximation becomes exact in the very early time regime 
(or the reaction-controlled limit) and in the long-lime (diffusion-controlled) asymptotic limit. 
For the intermediate time regime, we obtain a simple interpolalive behaviour between these hvo 
limits. We also study the coalescence process (with finite reaction rates) with Ihe back reaction 
A + A + A, and in the presence of particle input. In each of these cases the system reaches 
a non-trivial steady state with a finite concentration of particles. Theoretical predictions for the 
concentration time dependence and for the PDF are compared wilh computer simulations. 

1. Introduction 

In recent years much effort has been dedicated to diffusion-limited reactions in low 
dimensions [I-lo]. Most research has focused on the bimolecular reaction A + B + inert 
[Z], and on one-component coalescence, A + A  + A [3-81, and annihilation, A + A + 0 
[9,10]. The last two systems were solved exactly in one dimension and are especially useful 
in elucidating the anomalous kinetics of diffusion-limited reaction processes. Naturally, 
simple generalizations and extensions of these basic processes are of much interest, because 
of the possibility that they may also be solved exactly. Indeed, the coalescence process, 

, A + A + A, has also been solved together with the back reaction, A + A +A, and under 
an input of A particles [5], as well as for systems of finite size [7] and with inhomogeneous 
initial conditions [SI. 

In the diffusion-limited coalescence process reactions occur at an infinite rate, taking 
place immediately upon the encounter of any two particles. An obvious generalization 
would be to make the reaction rate finite. This more physical process would also exhibit 
an interesting crossover from a classical reaction-limited behaviour, at early times, to a 
diffusion-limited regime, in the long-time asymptotic limit. Surprisingly, this simple-minded 
generalization makes it difficult (perhaps even impossible) to solve the model exactly. 

Simulations have been performed, both on the one-component annihilation process and 
on the coalescence process in one dimension, with a finite reaction rate [11-131. The 
simulations show three different regimes: (i) an early time regime where the particles merely 
diffuse with a negligible change in the initial concentration; (ii) an intermdiate regime, in 
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which the concentration of particles decays faster than the diffusion-limited case, c - I/&, 
but not quite as fast as the classical limit, c - l / t  and (iii) a long-time diffusion-limited 
regime, where the system behaves exactly as if the reaction rate were infinite. Based 
on these simulation results, the intriguing possibility that in the intermediate regime the 
concentration decays anomalously in time, with a power dependent on the reaction rate, 
was raised [ll]. Subsequent theoretical work by Privman et al 1131 and Hoyuelos and 
MMm [12] has suggested that the kinetics in the intermediate regime can be explained as 
an interpolation between the classical and the diffusion-controlled limits. 

The analysis of Privman et a1 [13] is based on the concept of inter-particle distribution 
functions (IPDF), which had been introduced earlier for the exact solution of the coalescence 
process with infinite reaction rate [5].  In the PDF method a diffusion equation is derived 
for the probability that the two nea.rest particles are a distance x apart (the IPDF), and 
the reaction is represented by absorbing boundary conditions at the origin. Privman et a1 
have replaced this boundary condition with a radiative one, in order to approximate the 
finite reaction rate. Their approach yields an elegant, qualitative understanding of the three 
regimes discussed above. Hoyuelos and M M n  [12] have found an interpolation formula 
for the challenging intermediate regime, which fits the simulation data reasonably well. 
However, the derivation is largely phenomenological and it requires a scaling ansatz which 
we find physically obscure. 

In this paper, we study the one-dimensional coalescence process, A+A + A, with finite 
reaction rate. Our approach is based on the IPDF method but differs from that of Privman et 
al in important details. In particular, it allows us to derive a closed analytic expression for 
the concentration decay at all times. For the intermediate regime, an interpolative formula 
between the classical and diffusion-controlled limits emerges as a natural consequence of 
the approximation. We also study the coalescence process with backreactions, A +A+A, 
and with particle input, 0 + A. In each of these cases the system arrives at a non-trivial 
steady state where the concentration is finite. Finally, we study the IPDFs themselves, which 
show different characteristics at different time regimes and in the stationary cases. Our 
theoretical results compare quite well with computer simulations. 

The rest of tbe paper is organized as follows. Our model and a physical approximation 
based on the method of IPDFs are introduced in section 2. In section 3, we perform a 
mathematical approximation which enables us to solve the equations derived in section 2 
in a closed form In the same section, we compare simulations and analytic results. The 
two cases of non-trivial steady state are explored in section 4, both through our analytic 
approach and through computer simulations. We conclude with a discussion, in section 5 .  
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2. The reaction model and the IPDF method 

Our model is defined on a one-dimensional lattice with lattice spacing Ax. Each site 
can be either empty (0) or occupied (e) by one particle. The particles, move randomly, 
independently of each other, to a nearest-neighbour site with a hopping rate D/(Ax)*  (to 
each side). On long length and time-scales this yields normal diffusion with diffusion 
coefficient D. When a particle hops onto a site which is occupied, coalescence takes place 
with probability k ,  while with probability (1 - k )  the particle is reflected back to its original 
position and no reaction takes place. Thus, the probability k controls the rate of the reaction 

A f A + A .  (1) 
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When k = 0 the reaction rate is zero. The particles merely diffuse, bouncing off each other 
and no reactions take place. In the other extreme, when k = 1, reactions are immediate, 
i.e. the reaction rate is infinite. This is the purely diffusion-limited case. When k is very 
small but finite, one expects to find a regime which is dominated by the slow reaction rate. 
This is the classical reaction-limited case. 

To solve the system, we follow the IPDF method, used previously for the exact solution 
of this model in the case of k = 1 151. We define, as usual, E,(t), the probability that a 
randomly chosen segment of n consecutive sites is empty, i.e. it contains no particles. The 
probability that a site is occupied is 1 - E1 = C, and the density of occupied sites is 

C ( t )  = (1 - E l ( f ) ) / A x  = C ( t ) / A x .  (2) 

E, gives the probability that, say, sites 1 through n are empty, while E,+, gives 
the probability that sites 1 through It are empty and also site n + 1 is empty. Thus, the 
probability that a segment of n sites is empty, but that the adjacent (n+ 1)th site is occupied, 
is Prob(o 0.. . o 0 )  = En - &+I. It can also be shown [5 ]  that 

En-I - 2En + En+i = Cpn (3) 

where p .  is the probability that nearest-neighbour particles are exactly n sites apart (this 
is the IPDF, from which the method derives its name [6]). In particular, the probability of 
finding two adjacent occupied sites is given exactly by Prob(**) = 1 - 2E1 + Ez. 

When the reaction probability k = 1, one can write down an exact equation for the 
evolution of E,, 151: 

(4) 
2 0  

&En = p I ( E a - 1  - En) - (En - En+dI. 
(Ax)' 

The first term on the RHS describes the creation of an empty n-sites interval, when a particle 
at the inner edge of the interval hops out. The second term describes annihilation of an 
empty interval, when a particle at the outer edge of the interval hops in. 

When the reaction probability k c 1, hopping out of the interval is not always possible. 
The target site may be occupied, in which case hopping (and coalescence) will be disallowed, 
with probability 1 - k. To account for this effect, we require the probability of finding 
intervals of n - 1 consecutive empty sites, followed by two occupied sites. Since this 
probability cannot be expressed exactly in terms of E,, we use the approximation [14] 

n- I 
n-I 

(5) 
- Prob(o 0 . .  . o o)Prob(oo) (1 - ZEI + Ez)(E,-l - en) - Prob(o 0.. .o-) x - 

Prob(o) 1 - E1 

With this approximation, the evolution equation for arbitrary k is 

where the correction due to failed coalescence attempts is represented by the last term. 
Notice that when k = 1 this reduces properly to (4). 

Equation (6) is valid for n > 1. For n = 1 we have the exact equation 

2 0  
a,El = - k(l - 2EI + E d  

(Ax)' 
(7) 
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which simply states that sites become empty at the same rate as particles coalesce. 
Comparing (6) and (7) we see that they may be combined, by requiring the boundary 
condition 
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E&) = 1 .  (8) 

Equation (6) may thus be extended to the case of n = 1. A second boundary condition is 

E.@) = O  as n + 00 (9) 

since an infinitely long segment will always contain particles, as long as the concentration 
is finite. 

The only approximation made here is in (5), where some correlations between the 
probable state of consecutive intervals are neglected, which is known to be valid in the 
limit of small densities, c( t )  [14]. We argue, however, that (6) is asymptotically correct 
both in the early and long time regimes, and hence it may provide a reasonable interpolation 
for the intermediate time regime. If the starting configuration of the system is random, as 
assumed in this work, then E, = E; and the state of consecutive intervals are uncorrelated, 
regardless  of^ how large c(0) may be. This situation will persist, and (5) will hold, until 
the concentration drop is noticeable (i.e. the end of the early time regime) for it is only 
reactions which induce correlations (in fact, diffusion randomizes the system). On the other 
hand, after very long times the concentration of particles becomes very small. As a result, 
adjacent occupied sites become extremely rare and the correction term in (6) eventually 
becomes negligible. Equation (6) then degenerates to the case of an infinite reaction rate 
and it no longer matters how imprecise the correction term is. 

3. Integration of the evolution equation 

There exist various techniques for solving (6). with the boundary conditions of (8) and 
(9). Perhaps the most straightforward method is numerical integration, which requires 
discretization of the time variable in (6). A second approach, which worked well for the 
case of k = 1, is passing to the continuum limit 1.51. This is achieved by defining the spatial 
coordinate x = n Ax.  The probabilities &(t) are replaced by the function E ( x ,  t ) .  Letting 
Ax + 0, (6) is replaced by 

and the boundary conditions of (8) and (9) become 

E(0, t) = 1 and E ( x  + 00, t )  = 0. (11) 

We see that the finite reaction rate gives rise to a non-local, nonlinear term in (10). However, 
notice that a:Elx=o/a,E~~=o ~ ( t )  is a function of time only. Thus, in principle, one 
can proceed by Laplace transforming (10) with respect to the spatial variable x ,  and 
then determine o(t) in some self-consistent way. Unfortunately, this procedure leads to 
complicated expressions and one is forced to resort to series expansions, limiting the solution 
to a few asymptotic results. 
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Here we propose an alternative approach, based on an approximation of (6). We 
emphasize that this approximation is merely a mathematical convenience, designed to enable 
us to obtain a solution to (6) in closed form. The physical approximation made in (5) is 
the real focus of this paper. Indeed, (6) can be solved to any degree of accuracy employing 
numerical methods. 

We first sum (6) over the index n, from 1 to M, to yield 

where we have used the boundary conditions of (8) and (9). The RHS. can be made a function 
of El only with the help of (7). For the LHS we make the approximation E, x A / ( l - E l ) ,  
where A is a constant. The motivation for this is that in the long-time asymptotic limit 
En % 1 for all n up to a characteristic (n) = 1 / ( 1  - El). and falls sharply to zero for 
n =- (n) .  More precisely, in the long-time asymptotic limit the reaction proceeds as if k is 
effectively 1 ,  in which case we know that A = 2/a, exactly [5].  The approximation lies 
in the fact that we assume A to be constant at all times. Indeed, the variation in A is quite 
small; at the beginning of the process, when the distribution is random, A = 1. Let us 
then assume that A = 2/z (to match the exact long-time asymptotic solution) holds true 
throughout the process. Equation (12) then becomes 

1 - k d C  
C + - -  

d 2  
d r  irC kC d r  
__ = 

where r = ( ~ D / ( A x ) ~ ) ~  is a dimensionless time variable, and we have used 1 - E ,  = C 
(2). The solution to (13) is 

l - k + J ( % + l - k )  2 +;;r 'lv 
C =  '. (14) z.(& + $$+kr) 

where CO = C(t  = 0). 
In figure 1, we plot the concentration decay as computed from a numerical integration 

of (6), from the analytical expression of (14), and from computer simulations, for the same 
choice of parameters (D and CO) and for various choices of k .  The agreement between (14) 
and the numerical integration is excellent-little is lost in the 'mathematical' approximation. 
More importantly, there is good agreement between theory and simulations: the early and 
late time regimes match almost perfectly, and in spite of differences'of up to 9% in the 
intermediate regime, the slope of the curves and the crossover times are almost identical. 

From (14), we see that the intermediate time regime is merely an interpolation between 
a classical decay, C - l/t ,  and a diffusion-limited decay, C - 1/fi. We can use our 
result to estimate the crossover times. We first expand C(r )  in powers oft: 

r + o(r2)  
z k C ;  

C(r )  = CO - 
2k + Z( 1 - k)Co 

We obtain the crossover time between the early time regime and the intermediate regime, 
q ,  by requiring that the term linear in r be a finite fraction, E ,  of CO: 

2 I - k  
q = = E  ( z C ~  -+-). kCo 
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Figure 1. Concentration decay as a function of time for the coalescence process as obtained 
from computer simulations (full CUNC). and from (14) (broken curve). The different Curves 
represent different values of the reaction probability; k = 0.005, 0.01, 0.02, 0.04, 0.08 and 0.16 
(from lop to bottom). Also shown are results from numerical integration of (6) for k = 0.02 
(circles). 

Even in the diffusion-limited case, when k % 1, there is an early time regime where 
reactions go u~ot iced .  Since coalescence is immediate, the crossover time equals the 
typical time that two nearest particles will take to reach each other. The average distance 
between particles is I/CO, and since the particles diffuse, tl % l/Dci 1151, in agreement 
with the estimate above. The second term on the RHS predicts that the crossover time 51 wrill 
increase proportionally to ljkco, which is characteristic of the classical limit (classically, 
dc/dt = -kc2 and c = co/(l+ kcor)). 

Next, we expand (14) in powers of l/& 

1 1 - k  
C ( t )  = - ./?E + - 2kt '"(A). 

Notice that the leading term corres onds to the long-time asymptotic limit, where the 
concentration decays as c = I /  P '  Z z D t  (as in the exact solution fork = 1). Interestingly, 
the second term also does not retain any memory of the initial density, CO, but has some 
k-dependence. Comparing the leading term to the first correction we get an estimate for 52, 

the crossover time between the intermediate regime and the long time regime: 

n(l - k)' 
4kZ 

q = 

This can be explained heuristically, as follows. The long-time asymptotic regime occurs 
because the reaction probability k effectively renormalizes to 1: if the density of particles 
is C, the number of sites between neighbouring particles is on average 1/C. Because the 
particles diffuse, it takes them of the order of l/Cz steps to meet each other. During this 
time, each of the l /C  sites is visited of the order of (l/C*)/(l/C) = 1/C times. In 
particular, two neighbouring particles will collide about 1/C times before wandering off 
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from each other to interact with other particles. This means that two neighbouring particles 
will almost surely react before meeting other partners if ( 1 / C ) k  % 1, i.e. the crossover will 
occur when C xz k ,  or, since in the long-time asymptotic regime C = I/&, rz % I/r tk2,  
in agreement with (18). 

To obtain the IPDF, we integrate (6) numerically and then use (3). At time t = 0, 
we start with a random distribution of particles, so that p,(O) = (1 - COY/CO. In the 
continuum approximation. this can be written in the scaling form p ( f )  = exp(-f), where 
< = c( t )x .  As the reaction proceeds, the likelihood of finding nearby particles decreases, 
due to the coalescence  process.^ Thus, coalescence gives rise to an effective repulsion. 
In the long-time asymptotic limit, when k effectively renormalizes to 1, the IPDF arrives 
at the stationary scaling form p ( f )  = (7r</2) exp(-nf2/4) [5 ] .  During the intermediate 
time regime, the IPDF makes a smooth transition between these two limits. In figure 2, we 
plot p ( < )  as obtained from numerical integration and compare with computer simulations 
at various stages of the process. As might be expected, the agreement is worst in the 
intermediate time regime. 

cx 

Figure 2. The scaled PDF, ~ ( c x ) ,  for the coalescence process for k = O.M, as obtained from 
computer simulations (circles) and from numerical integration of (6) (full Curve). Resuits are 
shown for t = 0, 100, 1000 and 10000 (p(0) decreases with time). The mssova times for this 
particulv process are roughly at tl = 15 and tz = 4000. Also shown is the PDF in the long-lime 
asymptotic limit (broken curve). 

4. Coalescence with non-trivial steady states 

Until now, we have treated the case where in the long-time asymptotic limit the concentration 
drops to zero. We now want to discuss situations with a non-trivial steady state. It is 
important to examine such situations because they impose a stricter test on the validity of 
our approximation. 
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Back reactions 

We consider first the case where the reaction (1) is reversible [5] :  
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A + A + A .  (19) 

In the reverse process, A + A 4- A, a particle gives birth to another at an adjacent 
site, at rate u/Ax (this means rate u/2Ax on either side of the original particle). The 
corresponding evolution equation is 

(7.0) 
V 

- -(En - &+I) A x  

where the last term describes the annihilation of an n-sites empty interval due to a birth 
event from a particle at its outer edge. 

In the steady state, the LHS is equal to zero and (20) becomes a recursion relation for 
En. The solution can be found by assuming a steady state of maximum entropy: since the 
process is reversible, the steady state is an equilibrium state and hence the PDF is a Poisson 
distribution, E, = ET. Taking into account the boundary conditions of (8) and (S), we find 

2Dk 
Em = ( 2 D k  + u A x )  

and 

U - 1 - El c , = - -  
Ax 2 D k + u A x '  

Notice that although (20) contains an approximation, the corresponding steady-state equation 
is exact: when the IPDF is completely random the approximation of (5) becomes exact. Thus, 
the result of (21) and (22) is exact. This is well confirmed by simulations. 

Particles input 

Consider now the case of a random, steady input of particles. At each time step empty sites 
become occupied with probability RAx. That is, R is the increase in concentration per unit 
time, due to input [5 ] .  The evolution equation is 

- RnAxE, ( 2 3  

where the last term represents the annihilation of an n-sites empty interval due to input. 
Here the steady-state limit is less simple than for back reactions. Although the input 

sustains a steady concentration of particles at the long-time asymptotic limit, this stationary 
state is not a true equilibrium state (the input process is not the reverse of coalescence) 
and the particles are more ordered than in a Poisson distribution. Nevertheless, (23) with 
atE. = 0 still yields an approximate recursion relation for the stationary E.. This can be 
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solved exactly, but the solution is rather cumbersome. Instead, it is more enlightening to 
consider the continuum limit of the steady state equation 

0 = 2 D i $ E - 2 0 ( 1  - k ) w & E - x R E  (7.4) 

where w = a~El,=o/a,El,,o = -a~E\ ,=O/c ,  is now a constant. To determine w, let us 
look at the discrete steady-state equation for n = 1 

k( l  - 2E1 + E2) - AXRE1 
2 0  

It simply equates the rates of input events and coalescence events in the steady state. The 
continuum l i t  of (25) is too drastic in that it yields zero for each of these rates (and also 
w = 0). 

A somewhat inelegant, but effective way around this is to retain A x R  finite, so that 
o = -RAx/ZDkc, # 0. Then, the solution to (25) with the boundary conditions of ( 1 1 )  is 

where K = 4 D k / ( l  - k)RAx and r = R / 2 D .  From the relation c, = -axElz=o. we then 
obtain a transcendental equation for the steady-state concentration, c,: 

1 A i ’ [ r - 2 1 3 / ( ~ ~ , ) Z ]  - - - ,.1/3 
A i [ r - 2 f l / ( ~ ~ , ) Z ]  ’ 

s -  
K C S  

In figure 3, we plot cg as a function of the reaction probability k ,  for fixed r (r1I3 = 0.04), 
as obtained from computer simulations and from numerical integration of the discrete steady- 
state equation. The agreement between simulations and theory is quite good. Also, for the 
range shown, the agreement between (27) and the numerical integration is better than 4%. 

0.2 0.4 0.6 0.8 
Reaction Probability k 

0.025; 

Fipm 3. The stationary concentration. 4, as a function of the reaction probability, k for 
coalescence with input of particles, with r = (0.04)3. Numerical integntion of (23) (circles) is 
compared with computer simulation results (full curve). 
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cx 

Figure 4. The scaled IPDF, p(c,x) for the Same process as in figure 3 for k = 0.02, 0.04. 0.08, 
0.20 and 0.40 ( p ( 0 )  is smaller for larger k), as computed hom the second derivative of (26) 
(broken curve) and compared with computer simulafions (full curve). 

For small concentrations, (27) itself may be simplified. If c << r 1 j 3 / ~ ,  then 
Ai'[r-z/3/(~~g)2]/Ai[r-2/3/(~~S)2] R Ai'(O)/Ai(O) = 0.72901.. . and the equation reduces 
to a simple quadratic, with the solution 

Here ZS is the steady-state concentration when k = 1, and is exact [SI. In the range shown 
in figure 3, equation (28) agrees with the c, obtained from numerical integration of (23) to 
within 10%. We emphasize, again, that the mathematical approximations made here are not 
essential to our method, but are merely done to obtain simple final expressions, to better 
understand the consequences of the physical approximation made in writing (23). 

Finally, the IPDF itself is obtained from p ( x )  = ( I / c , )aZE/ax2 ,  and using (26) with the 
c, found from numerical integration (or any of the approximation formulae). In figure 4, 
we compare the IPDFs obtained in this way and from computer simulations for r1l3 = 0.04 
fixed, and various values of k. The tail of p(x) falls off as exp(-x3l2) and for moderately 
large k p ( x )  shows a maximum. Thus, the system is more ordered than in the case of 
back reactions, but less ordered than in the case of pure coalescence, where the tail of 
the IPDF decays as exp(-x2). The agreement between theory and simulations is best for 
large k. From figures 3 and 4 one can see that the IPDF is a much more sensitive test for 
approximations than the concentration alone. 

An interesting result is that p(x = 0) is zero only when k = 1. This is in contrast 
with the case of pure coalescence, where in the long-time asymptotic limit p(0) = 0, 
regardless of the value of k. Recall that in the latter w e  k effectively renormalizes to 1 
when the concentration decreases. This cannot happen in the case of back reactions, when 
c approaches a stationary fnite value. Then, if the reaction rate is small enough it can 
overcome the strong effective repulsion between nearest particles. 
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5. Summary and discussion 

We have introduced an approximation, based on the IPDF method, which allows us to 
draw analytically simple descriptions of the coalescence process A + A + A in one 
dimension, with finite reaction rates. The intermediate time regime is convincingly shown 
to be a crossover behaviour between the classical, reaction-controlled limit, in which the 
concentration decays as c - I / t ,  and the diffusion-controlled limit, where c - l/&. This 
result, summarized in (14). is similar to that of Hoyuelos and M&in [12]. It requires no 
fitting parameters and no approximations other than the standard approximation of (5). 

The approximation yields exact results for the equilibrium state, reached in the presence 
of the reverse reaction A + A+A. This is because in the equilibrium state the fundamental 
approximation of (5) becomes exact. Surprisingly, we obtain rather accurate results for the 
stationary state of the process with input, in spite of the strong spatial correlations that do 
evolve. 

The present approach is similar to that of Privman et a1 [ 131. Their equation for the 
IPDF 

is closely related to our (IO), through p ( x ,  t )  = a,'E(x, f ) / c ( t ) .  The difference is that 
Rob(o o . . . o ma) x Prob(o o . . . o *)Rob(*) is used, instead of our (5). Although (5) is 
a bit more sensitive to short-range correlations, we believe that this difference is trivial. 
The advantage of our approach is more likely in that in writing an evolution equation for 
E(x ,  t ) ,  we are able to use the exact boundary condition E(0, t )  = 1. In contrast, there is 
no such constraint on p ( x  = 0, t )  of (29). 

Regarding reverse reactions and input of particles, here we have discussed only the sta- 
tionary limits and have not addressed the timedependent relaxation to the steady state. A 
straightforward separation of variables and decomposition into eigenvalue equations is not 
possible, because of the nonlinear nature of the correction term arising from the finite reac- 
tion rate. In the case of back reactions and infinite reaction rate, there is a dynamical phase 
transition in the characteristic relaxation time [5]. It will be interesting to see how this transi- 
tion is affected by finite reaction rates. Is there a range of reaction rates for which the transi- 
tion disappears? The approximation method used here has been employed successfully, with 
slight modifications, for the study of the diffusion-limited processes 3A + 2.A and 3A + A 
[E], and for the contact process in one dimension [17]. It may be ,worthwhile to further 
explore its potential. For example, (5) can be systematically improved, by writing a hierar- 
chy of evolution equations for the state probabilities of finite size intervals and introducing 
a truncation scheme at a later stage. These intriguing questions are left for future work. 
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